skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kass, Jamie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Abstract Understanding global patterns of genetic diversity is essential for describing, monitoring, and preserving life on Earth. To date, efforts to map macrogenetic patterns have been restricted to vertebrates, which comprise only a small fraction of Earth’s biodiversity. Here, we construct a global map of predicted insect mitochondrial genetic diversity from cytochrome c oxidase subunit 1 sequences, derived from open data. We calculate the mitochondrial genetic diversity mean and genetic diversity evenness of insect assemblages across the globe, identify their environmental correlates, and make predictions of mitochondrial genetic diversity levels in unsampled areas based on environmental data. Using a large single-locus genetic dataset of over 2 million globally distributed and georeferenced mtDNA sequences, we find that mitochondrial genetic diversity evenness follows a quadratic latitudinal gradient peaking in the subtropics. Both mitochondrial genetic diversity mean and evenness positively correlate with seasonally hot temperatures, as well as climate stability since the last glacial maximum. Our models explain 27.9% and 24.0% of the observed variation in mitochondrial genetic diversity mean and evenness in insects, respectively, making an important step towards understanding global biodiversity patterns in the most diverse animal taxon. 
    more » « less
  3. A high-resolution map of ant diversity allows an assessment of how well biodiversity centers overlap across taxa. 
    more » « less
  4. Abstract Biologists increasingly rely on computer code to collect and analyze their data, reinforcing the importance of published code for transparency, reproducibility, training, and a basis for further work. Here, we conduct a literature review estimating temporal trends in code sharing in ecology and evolution publications since 2010, and test for an influence of code sharing on citation rate. We find that code is rarely published (only 6% of papers), with little improvement over time. We also found there may be incentives to publish code: Publications that share code have tended to be low‐impact initially, but accumulate citations faster, compensating for this deficit. Studies that additionally meet other Open Science criteria, open‐access publication, or data sharing, have still higher citation rates, with publications meeting all three criteria (code sharing, data sharing, and open access publication) tending to have the most citations and highest rate of citation accumulation. 
    more » « less
  5. The field of distributional ecology has seen considerable recent attention, particularly surrounding the theory, protocols, and tools for Ecological Niche Modeling (ENM) or Species Distribution Modeling (SDM). Such analyses have grown steadily over the past two decades—including a maturation of relevant theory and key concepts—but methodological consensus has yet to be reached. In response, and following an online course taught in Spanish in 2018, we designed a comprehensive English-language course covering much of the underlying theory and methods currently applied in this broad field. Here, we summarize that course, ENM2020, and provide links by which resources produced for it can be accessed into the future. ENM2020 lasted 43 weeks, with presentations from 52 instructors, who engaged with >2500 participants globally through >14,000 hours of viewing and >90,000 views of instructional video and question-and-answer sessions. Each major topic was introduced by an “Overview” talk, followed by more detailed lectures on subtopics. The hierarchical and modular format of the course permits updates, corrections, or alternative viewpoints, and generally facilitates revision and reuse, including the use of only the Overview lectures for introductory courses. All course materials are free and openly accessible (CC-BY license) to ensure these resources remain available to all interested in distributional ecology. 
    more » « less
  6. Abstract As geographic range estimates for the IUCN Red List guide conservation actions, accuracy and ecological realism are crucial. IUCN’s extent of occurrence (EOO) is the general region including the species’ range, while area of occupancy (AOO) is the subset of EOO occupied by the species. Data‐poor species with incomplete sampling present particular difficulties, but species distribution models (SDMs) can be used to predict suitable areas. Nevertheless, SDMs typically employ abiotic variables (i.e., climate) and do not explicitly account for biotic interactions that can impose range constraints. We sought to improve range estimates for data‐poor, parapatric species by masking out areas under inferred competitive exclusion. We did so for two South American spiny pocket mice:Heteromys australis(Least Concern) andHeteromys teleus(Vulnerable due to especially poor sampling), whose ranges appear restricted by competition. For both species, we estimated EOO using SDMs and AOO with four approaches: occupied grid cells, abiotic SDM prediction, and this prediction masked by approximations of the areas occupied by each species’ congener. We made the masks using support vector machines (SVMs) fit with two data types: occurrence coordinates alone; and coordinates along with SDM predictions of suitability. Given the uncertainty in calculating AOO for low‐data species, we made estimates for the lower and upper bounds for AOO, but only make recommendations forH. teleusas its full known range was considered. The SVM approaches (especially the second one) had lower classification error and made more ecologically realistic delineations of the contact zone. ForH. teleus, the lower AOO bound (a strongly biased underestimate) corresponded to Endangered (occupied grid cells), while the upper bounds (other approaches) led to Near Threatened. As we currently lack data to determine the species’ true occupancy within the post‐processed SDM prediction, we recommend that an updated listing forH. teleusinclude these bounds for AOO. This study advances methods for estimating the upper bound of AOO and highlights the need for better ways to produce unbiased estimates of lower bounds. More generally, the SVM approaches for post‐processing SDM predictions hold promise for improving range estimates for other uses in biogeography and conservation. 
    more » « less